
Unsupervised Template Mining for
Semantic Category Understanding

Lei Shi1,2, Shuming Shi3, Chin-Yew Lin3, Yi-Dong Shen1, Yong Rui3

1Institute of Software, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

3Microsoft Research

EMNLP 2014, Doha, Qatar

Semantic category names*

• A plain string which can describe a set of items
sharing common semantic properties
– {Carnival, Christmas,…} national holiday of Brazil

– {Nocturia, weight loss,…} symptom of insulin deficiency

• Manually edited
– Existing knowledge bases, like Wikipedia

• Automatic extraction
– Hypernymy (is-A) relation extraction techniques

*The term Category name and category used interchangeably in this slide.

Understand category names

• Category names are in plain text

• Internal structures of category names
– A set of category names : {CEO of General Motors, CEO of Yahoo, …}

– A template : CEO of [company]

• Potential applications
– Additional features (web search and question answering)

– Cleaning of noisy category names collection (promising results in our experiments!)
– Possible (for a computer program) to infer the semantic meaning

Symptom of insulin deficiency

Symptom of [hormone] deficiency

Symptom of [medical condition]

How to get these
templates automatically from

a large collection of category names?

Outline

• The problem

• Approach

• Experiments

• Related work

• Conclusion

Problem definition

• Input : a large collection of category names
– Perform hyernymy extraction on 3 billion English pages

– 40 million terms, 74 million hypernyms and 321 million edges (termhypernym)

– All the multi-word hypernyms are used as the category name collection

• Output : a list of templates
– Template: Multi-word string with one headword and several arguments

– A score indicating how likely the template is valid

headword
argument

Problem analysis

• A straightforward way to get templates

– Divide & Replace (we have a termhypernym map)
• Divide : CEO of Delphinus CEO + of + Delphinus

• Replace : CEO of [company] (√) CEO of [constellation] (×)

• Main Challenge
– Ambiguity: many segments have multiple meanings

– CEO of [constellation] (a wrong template!)

Approach

Intuitive approach

• Category labeling
– Category segmentation

• Divide each category into multiple segments
• Each segment is one word or phrase in an entity dictionary
• e.g. holiday of South Africa (holiday + of + South Africa)

– Segment to hypernym
• We use a termhypyrnym mapping from a dump of Freebase
• Hint: no weight in the mapping

– Candidate Template Tuple (CTT) generation
• 𝑈1: (holiday of [country], Brazil, 𝑤1)
• 𝑈2: (holiday of [book], Brazil, 𝑤2)

• Template scoring
– Merge all the CTTs for each template
– e.g. holiday of [country]

• 𝑈1: (holiday of [country], South Africa, 𝑤1)
• 𝑈2: (holiday of [country], Brazil, 𝑤2)
• 𝑈3: (holiday of [country], Germany, 𝑤3)
• …

– 𝑈 = {𝑈1, 𝑈2, 𝑈3, … }

Intuitive approach (cont.)

• Scoring function (a TF-IDF style function)
– 𝐹 𝑈 = 𝑖=1

𝑛 𝑤𝑖 ∙ 𝐼𝐷𝐹(ℎ) (linear combination function)

• h : the argument type (like, [country] in holiday of [country])

– 𝐼𝐷𝐹1 ℎ = 𝑙𝑜𝑔
1+𝑁

1+𝐷𝐹(ℎ)

• N is the total number of terms in termhypernym mapping

• DF(h) is the number of terms belong to hypernym h

– 𝐼𝐷𝐹2 ℎ =
1

𝑠𝑞𝑟𝑡(𝐷𝐹(ℎ))

• Estimation of tuple score 𝑤𝑖

– 𝑤𝑖 = 1

– No weight information in the termhypeynym mapping of Freebase

Intuitive approach (cont.)

Linear combination function

Approach: Enhancing Template Scoring

• Enhancing tuple scoring
– Leveraging statistical information from large corpus to estimate tuple

score 𝑤𝑖

• Enhancing tuple combination function
– Limitations of linear combination function

– Nonlinear functions

• Refinement with term similarity and terms clusters
– Building term clusters

– Refining template score

Enhancing tuple scoring

• Intuition
– U1: (holiday of [country], South Africa, w1)

– U2: (holiday of [book], South Africa, w2)

– “South Africa” is more likely to be a country than a book , 𝑤1 > 𝑤2

• The idea : performing statistics in a large corpus
– Get the popularity F of (term, hypernym) by referring to a corpus

– 𝑤𝑖 = log 1 + 𝐹 𝑣, ℎ
• v indicates the argument value and h indicates the argument type

– 𝑤𝑖 =
𝐹(𝑣,ℎ)

𝛾+ ℎ𝑗∈𝐻
𝐹(𝑣,ℎ𝑗)

• v indicates the argument value; h and ℎ𝑗 indicates the argument type

Enhancing tuple combination function

• Definitions of some events
– T : Template T is a valid template;

– 𝑇 : T is an invalid template;

– 𝐸𝑖 : The observation of tuple 𝑈𝑖;

• Posterior odds of event T, Given 𝑈1and 𝑈2
– Assume 𝐸1 and 𝐸2 are conditionally independent given T or 𝑇

–
𝑃(𝑇|𝐸1,𝐸2)

𝑃(𝑇|𝐸1,𝐸2)
=

𝑃(𝑇|𝐸1)∙𝑃(𝑇)

𝑃(𝑇|𝐸1)∙𝑃(𝑇)
∙
𝑃(𝑇|𝐸2)∙𝑃(𝑇)

𝑃(𝑇|𝐸2)∙𝑃(𝑇)
∙
𝑃(𝑇)

𝑃(𝑇)

– Define 𝐺 𝑇 𝐸 = 𝑙𝑜𝑔
𝑃(𝑇|𝐸)

𝑃(𝑇|𝐸)
− 𝑙𝑜𝑔

𝑃(𝑇)

𝑃(𝑇)

– 𝐺 𝑇 𝐸1, 𝐸2 = 𝐺 𝑇 𝐸1 + 𝐺(𝑇|𝐸2)

Enhancing tuple combination function
(cont.)

• Easy to get

– 𝐺 𝑇 𝐸1, … , 𝐸𝑛 = 𝑖=1
𝑛 𝐺(𝑇|𝐸𝑖)

• Connection with 𝐹 𝑈 = 𝑖=1
𝑛 𝑤𝑖 ∙ 𝐼𝐷𝐹(ℎ)

– Assume 𝐺 𝑇 𝐸𝑖 = 𝑤𝑖 ∙ 𝐼𝐷𝐹 ℎ

– These two equations are in the same form!

– Assumption: tuples are conditional independent (may not hold true in
reality)

• Nonlinear functions
– In the task of hypernymy relation extraction (Zhang et al., 2011)

– p-Norm

• 𝐹 𝑈 =
𝑝
 𝑖=1

𝑛 𝑤𝑖
𝑝 ∙ 𝐼𝐷𝐹 ℎ (𝑝 > 1) (empirically setting as 2)

Enhancing tuple combination function
(cont.) : an example

• Two Templates
– City of [country], 𝑈𝐴 = 200, average score for each tuple: 1.0

– City of [book], 𝑈𝐵 = 1000, average score for each tuple: 0.2

• Linear functions

– 𝐹 𝑈𝐴 = 200 ∗ 1.0 = 200

– 𝐹 𝑈𝐵 = 1000 ∗ 0.2 = 200

• Nonlinear functions

– 𝐹 𝑈𝐴 = 14.1

– 𝐹 𝑈𝐵 = 6.32

• The score given by the nonlinear functions is more reasonable!

Refinement with term clusters

• Intuition
– {“city in Brazil”, “city in South Africa”, “city in China”, “city in Japan”}

– {Brazil, South Africa, China, Japan} very similar!

– City in [country] is more likely to be a good template

• Building term clusters
– Term peer similarity

• “dog” and “cat”

• Kozareva et al., 2008; Shi et al., 2010; Agirre et al., 2009

– Clustering
• Choose top-30 neighbors for each term

• Run hierarchical clustering algorithm

• Merge highly duplicated clusters

– Assigning top hypernyms

Refinement with term clusters (cont.)

• Template score refinement
– Template T with argument type h and supporting tuples 𝑈 =

(𝑈1, 𝑈2, … , 𝑈𝑛) 𝑉 = 𝑉1, 𝑉2, … 𝑉𝑛 is the corresponding argument values.

– Observation
• Compute the intersection of V and every term cluster

• Good template : at least one cluster which has hypernym h and contains many elements
in V

• Bad template : only contains a few elements in V

– Calculating supporting scores
• 𝑆 𝐶, 𝑇 = 𝑘 𝐶, 𝑉 ∙ 𝑤 𝐶, ℎ

– C is a term cluster

– Calculating the final template score

• 𝑆 𝑇 = 𝐹(𝑈) ∙ 𝑆(𝐶∗, 𝑇)

• 𝐶∗ has the maximum supporting score for T

Experiments

Experimental Setup

• Data source
– A large corpus containing 3 billion English web pages

– Extract 74 million category names

• Datasets
– Subsets

• Choose 20 diverse headwords from 100 random sampled headwords

• 20 subsets : each set contains all the categories having the same headword

• E.g., “symptom of insulin deficiency” and “depression symptom” are in the same set

– Fullset
• All the 74 million category names

• Labeling
– Good (1), fair (0.5) and bad (0)

• Metric
– precision

Experimental Setup

• Comparing methods
– Base : the intuitive methods

– LW and LP: with a reasonable estimation of tuple score

– NLW and NLP : using the nonlinear functions

– LW+C, LP+C, NLW+C and NLP+C : refinement with term cluster

– SC (Cheung and Li, 2012)

𝑤𝑖 = log 1 + 𝐹 𝑣, ℎ : LW, NLW, LW+C, NLW+C

𝑤𝑖 =
𝐹(𝑣,ℎ)

𝛾+ ℎ𝑗∈𝐻
𝐹(𝑣,ℎ𝑗)

: LP, NLP, LP+C, NLP+C

Template Quality Comparison
Method P@10 P@20 P@30

Base (baseline-1) 0.359 0.361 0.358

SC (Cheung and Li, 2012) 0.382 0.366 0.371

LW (baseline-2) 0.633 0.582 0.559

NLW 0.711 0.671 0.638

LW+C 0.813 0.786 0.754

NLW+C 0.854 0.833 0.808

• Base LW : the edge weight can boost the performance

• LW NLW : the effectiveness of nonlinear functions

• LWLW+C and NLWNLW+C : the effectiveness of term similarity

• The combination of the three techniques lead to the best
performance

Template Quality Comparison (cont.)
Method P@10 P@20 P@30

Base (baseline-1) 0.359 0.361 0.358

SC (Cheung and Li, 2012) 0.382 0.366 0.371

LP (baseline-2) 0.771 0.734 0.707

NLP 0.818 0.791 0.765

LP+C 0.818 0.788 0.778

NLP+C 0.868 0.839 0.788

• Base LP : the edge weight can boost the performance

• LP NLP : the effectiveness of nonlinear functions

• LPLP+C and NLPNLP+C : the effectiveness of term similarity

• The combination of the three techniques lead to the best
performance

Experimental results on Full-set

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

P
re

ci
si

o
n

Section ID

Section
ID

Range

1 [1~100]

2 (100~1,000]

3 (1,000~10,000]

4 (10,000~100,000]

5 (100,000~120,000]

6 (120,000~140,000]

7 (140,000~160,000]

8 (160,000~180,000]

9 (180,000~200,000]

Performance of NLP+C method in the full-set

Cleaning of Noisy Category Name
Collection

• Category name collection is noisy
– Automatically constructed from the web

• Basic idea
– If a category name can match a template, it is more likely to be

correct.

– 𝑆𝑛𝑒𝑤 𝐻 = log(1 + 𝑆(𝐻)) ∙ 𝑆(𝑇∗)
• 𝑆(𝐻) is the existing category score

• 𝑆(𝑇∗) is the score of template 𝑇∗, 𝑇∗ is the best template for the category

• Re-ranked the category names list based on the new score

– The precision increases from 0.81 to 0.89

Related work

• Hypernym relation extraction

– Category names as plain text
• Hearst (1992); Pantel and Ravichandran (2004); Van Durme and Pasca (2008);

Zhang et al. (2011)

• Query understanding

– Query tagging
• Li et al. (2009); Reisinger and Pasca (2011)

– Query template construction
• Agarwal et al. (2010); Szpektor et al. (2011);Pandey and Punera (2012);

Cheugn and Li (2012)

• Category name exploration
– Third (2012); Fernandez-Breis et al. (2010); Martinez et al. (2012)

Summary

• Mining templates to understand category names
– Edge weight (termhypernym)
– Nonlinear scoring function
– Term similarity and term clusters

• Contributions
– First work of template generation specifically for category names in

unsupervised manner
– Extract semantic knowledge and statistical information from a web corpus

for improving template generation
– Study the characteristics of scoring function and demonstrate the

effectiveness of nonlinear functions

• Future work
– Supporting multi-argument templates
– Applying our approach to general short text template mining

Thanks for your attention!
Questions?

