Unsupervised Template Mining for Semantic Category Understanding

Lei Shi^{1,2}, Shuming Shi³, Chin-Yew Lin³, Yi-Dong Shen¹, Yong Rui³

¹Institute of Software, Chinese Academy of Sciences ²University of Chinese Academy of Sciences ³Microsoft Research

EMNLP 2014, Doha, Qatar

Semantic category names*

- A plain string which can describe a set of items sharing common semantic properties
 - {Carnival, Christmas,...} \rightarrow national holiday of Brazil
 - − {Nocturia, weight loss,...} → symptom of insulin deficiency
- Manually edited
 - Existing knowledge bases, like Wikipedia
- Automatic extraction
 - Hypernymy (is-A) relation extraction techniques

*The term <u>Category name</u> and <u>category</u> used interchangeably in this slide.

Understand category names

- Category names are in plain text
- Internal structures of category names
 - A set of category names : {CEO of General Motors, CEO of Yahoo, ...}
 - A template : CEO of [company]
- Potential applications
 - Additional features (web search and question answering)
 - Cleaning of noisy category names collection (*promising results in our experiments!*)
 - Possible (for a computer program) to infer the semantic meaning

Symptom of insulin deficiency Symptom of [medical condition] Symptom of [hormone] deficiency

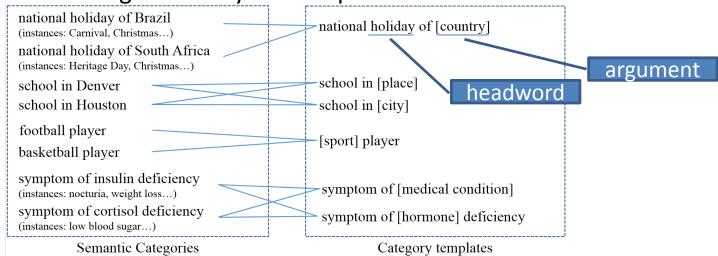
How to get these <u>templates</u> automatically from a large collection of category names?

Outline

- The problem
- Approach
- Experiments
- Related work
- Conclusion

Problem definition

- Input : a large collection of category names
 - Perform hyernymy extraction on 3 billion English pages
 - 40 million terms, <u>74 million hypernyms</u> and 321 million edges (term→hypernym)
 - All the multi-word hypernyms are used as the category name collection
- Output : a list of templates
 - Template: Multi-word string with one headword and several arguments
 - A score indicating how likely the template is valid



Problem analysis

- A straightforward way to get templates
 - Divide & Replace (we have a term \rightarrow hypernym map)
 - Divide : CEO of Delphinus \rightarrow CEO + of + Delphinus
 - Replace : CEO of [company] (√) CEO of [constellation] (×)
- Main Challenge
 - Ambiguity: many segments have multiple meanings
 - CEO of [constellation] (a wrong template!)

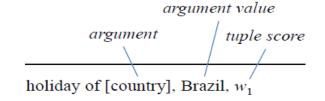
Approach

Intuitive approach

• Category labeling

- Category segmentation
 - Divide each category into multiple segments
 - Each segment is one word or phrase in an entity dictionary
 - e.g. holiday of South Africa (holiday + of + South Africa)
- Segment to hypernym
 - We use a term→hypyrnym mapping from a dump of Freebase
 - Hint: no weight in the mapping
- Candidate Template Tuple (CTT) generation
 - *U*₁: (holiday of [country], Brazil, *w*₁)
 - U_2 : (holiday of [book], Brazil, w_2)
- Template scoring
 - Merge all the CTTs for each template
 - e.g. holiday of [country]
 - U_1 : (holiday of [country], South Africa, w_1)
 - U₂: (holiday of [country], Brazil, w₂)
 - U₃: (holiday of [country], Germany, w₃)

$$- \quad \vec{U} = \{U_1, U_2, U_3, \dots\}$$



Intuitive approach (cont.)

• Scoring function (a TF-IDF style function)

 $-F(\vec{U}) = \sum_{i=1}^{n} w_i \cdot IDF(h)$ (linear combination function)

• h : the argument type (like, [country] in holiday of [country])

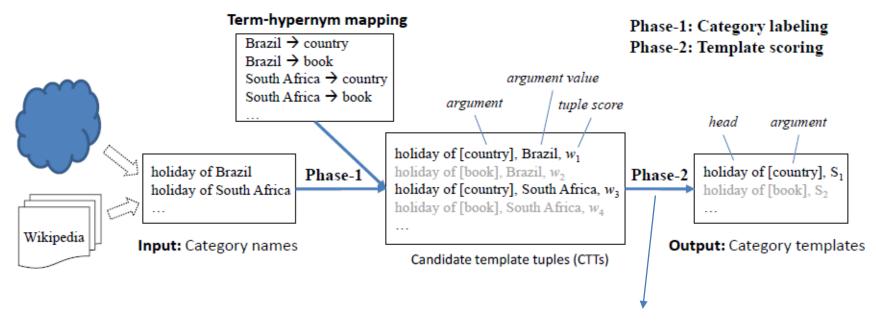
$$-IDF_1(h) = \log \frac{1+N}{1+DF(h)}$$

- N is the total number of terms in term \rightarrow hypernym mapping
- DF(h) is the number of terms belong to hypernym h

$$- IDF_2(h) = \frac{1}{sqrt(DF(h))}$$

- Estimation of tuple score w_i
 - $w_i = 1$
 - No weight information in the term \rightarrow hypeynym mapping of Freebase

Intuitive approach (cont.)



Linear combination function

Approach: Enhancing Template Scoring

- Enhancing tuple scoring
 - Leveraging statistical information from large corpus to estimate tuple score w_i
- Enhancing tuple combination function
 - Limitations of linear combination function
 - Nonlinear functions
- Refinement with term similarity and terms clusters
 - Building term clusters
 - Refining template score

Enhancing tuple scoring

• Intuition

- U_1 : (holiday of [country], South Africa, w_1)
- U₂: (holiday of [book], South Africa, w₂)
- "South Africa" is more likely to be a country than a book , $w_1 > w_2$
- The idea : performing statistics in a large corpus
 - Get the popularity F of (term, hypernym) by referring to a corpus
 - $w_i = \log(1 + F(v, h))$
 - v indicates the argument value and h indicates the argument type

$$- w_i = \frac{F(v,h)}{\gamma + \sum_{h_j \in H} F(v,h_j)}$$

• v indicates the argument value; h and h_j indicates the argument type

Enhancing tuple combination function

Definitions of some events

- T: Template T is a valid template;
- \overline{T} : T is an invalid template;
- E_i : The observation of tuple U_i ;
- Posterior odds of event T, Given U_1 and U_2
 - Assume E_1 and E_2 are conditionally independent given T or \overline{T}
 - $\frac{P(T|E_1, E_2)}{P(\bar{T}|E_1, E_2)} = \frac{P(T|E_1) \cdot P(\bar{T})}{P(\bar{T}|E_1) \cdot P(T)} \cdot \frac{P(T|E_2) \cdot P(\bar{T})}{P(\bar{T}|E_2) \cdot P(T)} \cdot \frac{P(T)}{P(\bar{T})}$
 - Define $G(T|E) = log \frac{P(T|E)}{P(\overline{T}|E)} log \frac{P(T)}{P(\overline{T})}$
 - $G(T|E_1, E_2) = G(T|E_1) + G(T|E_2)$

Enhancing tuple combination function (cont.)

• Easy to get

 $-G(T|E_1, \dots, E_n) = \sum_{i=1}^n G(T|E_i)$

- Connection with $F(\vec{U}) = \sum_{i=1}^{n} w_i \cdot IDF(h)$
 - Assume $G(T|E_i) = w_i \cdot IDF(h)$
 - These two equations are in the same form!
 - Assumption: tuples are conditional independent (may not hold true in reality)
- Nonlinear functions
 - In the task of hypernymy relation extraction (Zhang et al., 2011)
 - p-Norm
 - $F(\vec{U}) = \sqrt[p]{\sum_{i=1}^{n} w_i^p} \cdot IDF(h)$ (p > 1) (empirically setting as 2)

Enhancing tuple combination function (cont.) : an example

- Two Templates
 - City of [country], $\left| \overrightarrow{U_A} \right| = 200$, average score for each tuple: 1.0
 - City of [book], $\left| \overrightarrow{U_B} \right| = 1000$, average score for each tuple: 0.2
- Linear functions

$$- F(\overrightarrow{U_A}) = 200 * 1.0 = 200$$
$$- F(\overrightarrow{U_B}) = 1000 * 0.2 = 200$$

• Nonlinear functions

$$- F(\overrightarrow{U_A}) = 14.1$$
$$- F(\overrightarrow{U_B}) = 6.32$$

• The score given by the nonlinear functions is more reasonable!

Refinement with term clusters

Intuition

- {"city in Brazil", "city in South Africa", "city in China", "city in Japan"}
- {Brazil, South Africa, China, Japan} very similar!
- City in [country] is more likely to be a good template
- Building term clusters
 - Term peer similarity
 - "dog" and "cat"
 - Kozareva et al., 2008; Shi et al., 2010; Agirre et al., 2009
 - Clustering
 - Choose top-30 neighbors for each term
 - Run hierarchical clustering algorithm
 - Merge highly duplicated clusters
 - Assigning top hypernyms

Refinement with term clusters (cont.)

- Template score refinement
 - Template T with argument type <u>**h**</u> and supporting tuples $\vec{U} = (U_1, U_2, ..., U_n) V = (V_1, V_2, ..., V_n)$ is the corresponding argument values.
 - Observation
 - Compute the intersection of V and every term cluster
 - Good template : at least one cluster which has hypernym h and contains many elements in V
 - Bad template : only contains a few elements in V
 - Calculating supporting scores
 - $S(C,T) = k(C,V) \cdot w(C,h)$
 - C is a term cluster
 - Calculating the final template score
 - $S(T) = F(\vec{U}) \cdot S(C^*, T)$
 - C* has the maximum supporting score for T

Experiments

Experimental Setup

Data source

- A large corpus containing 3 billion English web pages
- Extract 74 million category names
- Datasets
 - Subsets
 - Choose 20 diverse headwords from 100 random sampled headwords
 - 20 subsets : each set contains all the categories having the same headword
 - E.g., "symptom of insulin deficiency" and "depression symptom" are in the same set
 - Fullset
 - All the 74 million category names
- Labeling
 - Good (1), fair (0.5) and bad (0)
- Metric
 - precision

Experimental Setup

Comparing methods

- Base : the intuitive methods
- LW and LP: with a reasonable estimation of tuple score
- NLW and NLP : using the nonlinear functions
- LW+C, LP+C, NLW+C and NLP+C : refinement with term cluster
- SC (Cheung and Li, 2012)

$$w_{i} = \log(1 + F(v, h)) : LW, NLW, LW+C, NLW+C$$
$$w_{i} = \frac{F(v, h)}{\gamma + \sum_{h_{i} \in H} F(v, h_{j})} : LP, NLP, LP+C, NLP+C$$

Template Quality Comparison

Method	P@10	P@20	P@30
Base (baseline-1)	0.359	0.361	0.358
SC (Cheung and Li, 2012)	0.382	0.366	0.371
LW (baseline-2)	0.633	0.582	0.559
NLW	0.711	0.671	0.638
LW+C	0.813	0.786	0.754
NLW+C	0.854	0.833	0.808

- Base \rightarrow LW : the edge weight can boost the performance
- LW \rightarrow NLW : the effectiveness of nonlinear functions
- LW \rightarrow LW+C and NLW \rightarrow NLW+C : the effectiveness of term similarity
- The combination of the three techniques lead to the best performance

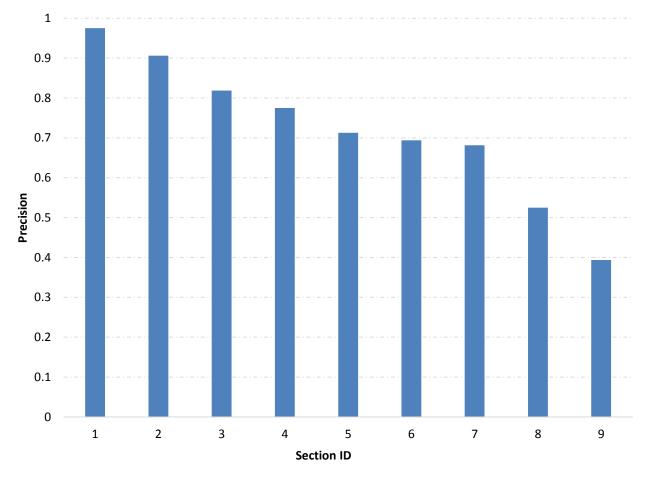
Template Quality Comparison (cont.)

Method	P@10	P@20	P@30
Base (baseline-1)	0.359	0.361	0.358
SC (Cheung and Li, 2012)	0.382	0.366	0.371
LP (baseline-2)	0.771	0.734	0.707
NLP	0.818	0.791	0.765
LP+C	0.818	0.788	0.778
NLP+C	0.868	0.839	0.788

- Base \rightarrow LP : the edge weight can boost the performance
- LP \rightarrow NLP : the effectiveness of nonlinear functions
- LP \rightarrow LP+C and NLP \rightarrow NLP+C : the effectiveness of term similarity
- The combination of the three techniques lead to the best performance

Experimental results on Full-set

Section ID	Range
1	[1~100]
2	(100~1,000]
3	(1,000~10,000]
4	(10,000~100,000]
5	(100,000~120,000]
6	(120,000~140,000]
7	(140,000~160,000]
8	(160,000~180,000]
9	(180,000~200,000]
9	(180,000~200,000]



Performance of NLP+C method in the full-set

Cleaning of Noisy Category Name Collection

- Category name collection is noisy
 - Automatically constructed from the web
- Basic idea
 - If a category name can match a template, it is more likely to be correct.
 - $S_{new}(H) = \log(1 + S(H)) \cdot S(T^*)$
 - *S*(*H*) is the existing category score
 - $S(T^*)$ is the score of template T^* , T^* is the best template for the category
 - Re-ranked the category names list based on the new score
 - The precision increases from 0.81 to 0.89

Related work

- Hypernym relation extraction
 - Category names as plain text
 - Hearst (1992); Pantel and Ravichandran (2004); Van Durme and Pasca (2008); Zhang et al. (2011)
- Query understanding
 - Query tagging
 - Li et al. (2009); Reisinger and Pasca (2011)
 - Query template construction
 - Agarwal et al. (2010); Szpektor et al. (2011); Pandey and Punera (2012); Cheugn and Li (2012)
- Category name exploration
 - Third (2012); Fernandez-Breis et al. (2010); Martinez et al. (2012)

Summary

- Mining templates to understand category names
 - Edge weight (term \rightarrow hypernym)
 - Nonlinear scoring function
 - Term similarity and term clusters
- Contributions
 - First work of template generation specifically for category names in unsupervised manner
 - Extract semantic knowledge and statistical information from a web corpus for improving template generation
 - Study the characteristics of scoring function and demonstrate the effectiveness of nonlinear functions
- Future work
 - Supporting multi-argument templates
 - Applying our approach to general short text template mining

Thanks for your attention! Questions?