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Brief Introduction of Feature Selection

select a subset of features from original feature space

Reduce computation cost
Remove noisy features
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Brief Introduction of Feature Selection

Supervised Feature Selection

leverage the supervised information to guide the search of
relevant features

Unsupervised Feature Selection

more challenging due to the lack of supervised information
(e.g.,class labels)
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Main Techniques of Unsupervised Feature Selection

Keys

1) Structure characterization; 2) Feature Weight Learning

Main Steps

estimate intrinsic structure (e.g, various graph Laplacian)
discover the cluster structure (e.g, spectral embedding, Matrix
Factorization)
Feature weight learning by some criterion or sparsity
regularization

Examples

LaplacianScore (NIPS’05), MCFS (KDD’10), NDFS
(AAAI’12), RUFS (IJCAI’13)
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Limitations of Existing Work

Graph Laplacian is affected by noisy features

Existing method construct graph Laplacian from original
feature space, which contains noisy features
degenerate the quality of the induces graph embedding

Estimated cluster structure is with noise

relaxing discrete class labels into continuous ones may
inevitably introduce noise
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Basic Idea

jointly improve the robustness of graph embedding and sparse
spectral regression

employ local kernel regression with `1 norm to measure the
local learning estimation error, which can be reformulated as a
graph embedding problem.
explicitly extracting sparse noise in the learned graph
embedding
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Robust Graph Embedding

Notations

Data matrix : X = {x1, ..., xn} ∈ Rd×n

Partition matrix : Y = [y1, ..., yc ] = [yil ] ∈ {0, 1}n×c

Robust Local kernel regression

min
Y∈Rn×c

J(Y) =
c∑

l=1

||yl − Syl ||1. (1)

sij =


K(xi ,xj )∑

xj∈Ni
K(xi ,xj )

xj ∈ Ni

0 xj /∈ Ni

(2)
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Robust Graph Embedding

Equivalent to minimizing the following problem

J(F) = Tr(FTMF) (3)

M = (B− S− ST ). B is the degree matrix of (S + ST ).

F = [f1, ..., fc ] is defined as F = Y(YTY)−
1
2 , and FTF = Ic
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Robust Spectral Regression

assume the noise on the estimated cluster structure is sparse

introduce a sparse matrix Z ∈ Rn×c to explicitly capture the
sparse noise

min
W,Z

||(F− Z)− XTW||2F , s.t.|Z|1 < η1, ||W||2,1 < η2 (4)
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Overall Framework

Combining the robust graph embedding and robust sparse spectral
regression, we get

min
F,W,Z

Tr(FTMF) + α||(F− Z)− XTW||2F

+ β||W||2,1 + γ||Z||1
s.t. F ∈ Rn×c

+ ,F = Y(YTY)−
1
2

(5)

Relaxing the elements in F into continuous ones,

min
F,W,Z

Tr(FTMF) + α||(F− Z)− XTW||2F

+ β||W||2,1 + γ||Z||1
s.t. F ∈ Rn×c

+ ,FTF = Ic

(6)
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Algorithm to Sovle RSFS

We develop an coordinate descent algorithm to alternatively
minimizing the objective function with respect to W, Z, and F.
This procedure is repeated until convergence.
Please refer to our paper for more details.
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Experimental setup

Comparing methods
Random, LS (NIPS2005), MCFS (KDD2010), UDFS
(IJCAI2011), NDFS (AAAI2012), RUFS(IJCAI2013)

Data sets

Table: Summary of data sets

Dataset Size Dimensions Classes
BBCSport 737 1000 5
WebKB4 4199 1000 4

ORL 400 1024 40
COIL20 1440 1024 20
MNIST 4000 784 10

Jaffe 213 676 10

Perform k-means clustering on the selected features. ACC and
NMI are reported
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Clustering on Data Sets without Explicit Noise
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(a) ORL
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(b) ORL
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(c) WebKB4
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(d) WebKB4
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(e) COIL20
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(f) COIL20
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(g) MNIST
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(h) MNIST

Figure: Clustering accuracy and normalized mutual information versus
the number of selected features on all the data sets
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Clustering on Data Sets with Malicious Occlusion
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(a) Corrupted ratio = 0.2
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(b) Corrupted ratio = 0.3

Figure: Clustering Accuracy on ORL with different ratio of noisy images
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Summary

we proposed a unified robust spectral framework for
unsupervised feature selection

robust graph embedding
robust sparse spectral regression

experimental results verified the effectiveness of our proposed
method

in datasets with and without explicit noise
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Thanks for your attention!
Questions?

Code available at : http://kingsleyshi.com/codes/RSFS.rar
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